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Abstract— This paper presents an aproach for modeling travel
time variability and reliability that accounts for time-of-day
effects on travel time variations. The conditional probability
density functions of travel time in each specific period play a
fundamental role in the modeling of time-varying variability and
reliability. Nonparametric kernel density estimation is applied to
travel time data, which enhances the flexibility and accuracy in
accommodating travel time distributions under various complex
traffic conditions. The proposed functional travel time density
model (FTTDM) uses functional principal component analysis
in kernel density function estimates for modeling and depicting
time-varying variability through the dependence on the departure
time of day. The resulting quantile estimates are used to obtain
time-varying reliability, which considers the addition of extra
time to the average or the median for an on-time arrival. This
study uses linked travel time data of an electronic toll collection
system to estimate route travel times in the Taiwan Freeway
system. As illustrated in the data applications, the FTTDM
effectively captures the time-varying feature of travel time
variability and reliability, and the reliability indicators identify
the unreliable departure time of day of a route.

Index Terms— Electronic toll collection system, functional data
analysis, kernel density estimation, quantile function, travel time
variability, travel time reliability.

I. INTRODUCTION

TRAVEL time information is essential in a transportation
system. However, significant variations in travel time over

a time-of-day period induced by variable travel demands and
limited capacities create challenges for assessing travel time
variability and reliability.

Travel time variability can be characterized by probabil-
ity distributions, including standard deviation, skewness and
kurtosis, coefficients of variation, and interquantiles of travel
times [1]–[6]. It is a critical concern in transportation eco-
nomics because it generates costs for road users [7]. Its value
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is influenced by time constraints; for example, it can be critical
during morning peak travel hours [8].

Travel time variability can further serve as a basis for
quantifying travel time reliability, which can be regarded as
the extent of consistency over acceptable time for road users
on a given route. Various definitions of travel time reliability
have been proposed. These include the probability that travel
times remain below an acceptable level [9], statistical range
methods evaluating the spread of travel times around the
expected value [10], and buffer time indices representing the
distance between the travel time of the 90th percentile and
the average [6]. These reliability indices measure the extent
of unexpected delays and rely on realizations of probability
distributions of travel times.

Large travel time variability implies low travel time reliabil-
ity that becomes worse in the congestion state [6], [11]. Traffic
instabilities such as speed oscillations and stop-and-go waves
are common phenomena in congested traffic. Interactions
between travel time variability and speed oscillation can be
evaluated from microscopic features of traffic flow [2], [12].
Travel time variability negatively correlates with traffic speed
yet positively correlates with traffic density. It increases with
flow rate when it is below the maximum flow rate but is
inversely correlated when it reaches the capacity [13].

Probability distributions of travel time vary with the time
of day, and thus, it is plausible to model travel time density
functions as a function of departure times to capture their time
trends and variations within a day. To model the temporal
variations of travel times with the complex time-varying
feature, we propose using functional data analysis (FDA) to
model the conditional densities of travel times as functions
of time of day coupled with nonparametric kernel density
estimates. We assume that the estimated probability density
functions of travel time, conditional on specific departure
times, are random trajectories that reflect stochastic variations
and time-varying changes in travel time. This random function
point of view forms the basis for the FDA approach, which
takes the conditional density functions as the basic unit for
statistical analysis. To the best of our knowledge, no studies
have modelled the time-varying feature of dynamic travel time
variability and reliability using an FDA approach.

FDA has been extensively developed as a statistical method-
ology to analyze data that are in the form of functions,
curves, or more general objects. Systematic overviews of FDA

1558-0016 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tamkang Univ.. Downloaded on December 17,2021 at 07:01:16 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4554-9454


258 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 1, JANUARY 2021

have been provided in monographs [14], [15] and review
articles [16], [17]. Among the various topics in this field,
functional regression analysis is widely applied when either
one or both of the predictor and response variables contain
random functions. For example, dynamical functional predic-
tion for traffic flow was developed using functional regression
analysis when both the predictor and response are random
functions [18]. Here, we consider the case of a functional
response variable, the travel time density function, with a
scalar predictor, departure time of day. The literature of this
type of regression includes applications to the covariate effects
on medfly egg-laying profiles [19] and the effect of birth year
on cohort mortality forecasts [20], among others.

This study uses linked travel time data from an electronic
toll collection (ETC) system to estimate route travel times.
The ETC travel time data are collected based on the empirical
observations obtained by the technology of automatic vehicle
identifications. The corresponding traffic speed of ETC is the
space-mean speed rather than the time-mean speed as recorded
by vehicle detectors or video cameras. Travel time estimation
inferred from time-mean speed data requires considerations
on various traffic states to reduce systematic biases [21], [22],
whereas the biases due to time-mean speed were theoretically
investigated and empirically verified by the ETC actual speed
records [23]. In contrast, the ETC travel time data are more
accurate irrespective of the traffic state.

We use travel time data from the Taiwan Freeway
Traffic Data Collection System (TDCS) to model travel time
densities as departure time-of-day functions for investigat-
ing time-varying changes in the variability and reliability.
We develop a data-adaptive statistical modeling approach and
a data-analytic tool with which to study travel time variability
and reliability.

A. Data and ETC-linked Route Travel Time Estimation

The TDCS collects travel time information by matching
vehicle license plates between two consecutive ETC gates and
averaging the travel times of passing vehicles to obtain aggre-
gated travel time records based on a 5-min time window. The
Taiwan ETC system has been migrated to the fully automatic
system since 2014, with distance-based pricing supported by
electronic tolling. Thus, the traffic volume used to calculate the
5-min aggregated travel times are population-based. Moreover,
the ETC has more than 6 million registered vehicles since
then with the toll collection rates above 99.9% [24], yielding a
sufficiently large sample to collect travel time data. The TDCS
provides an online archived traffic database called TISV-
CLOUD (http://tisvcloud.freeway.gov.tw/) that stores current
and historical traffic data. The M04A dataset in TISVCLOUD
comprises average ETC travel times based on vehicle type
between consecutive ETC gates. To obtain the travel time for a
route with a specific origin and destination that extends beyond
two consecutive ETC gates, we need to link the travel time
records while considering time shifts due to vehicle movement.
We propose an algorithm for calculating route travel time
between a prespecified origin and destination ETC gates for
a given start time window. The key idea is to correctly link

Fig. 1. Pseudo travel time records of two consecutive ETC gates for different
time windows.

the ETC records to a subsequent time window for each ETC
segment in order to obtain a linked travel time.

Fig. 1 illustrates the calculation of the travel time from
ETC1 to ETC5. The values in circles represent the average
travel time for the time window between two consecutive ETC
gates. A travel time of 6.1 min is required from ETC1 to ETC2
at [0:00, 0:05), which links to the next time window of [0:05,
0:10), yielding a travel time of 7.1 min from ETC2 to ETC3.
Thus, the travel time from ETC1 to ETC3 is 13.2 min, which
subsequently links to the time window of [0:10, 0:15), yielding
a travel time of 11.3 min from ETC3 to ETC4. Therefore,
the travel time from ETC1 to ETC4 is 24.5 min, which in turn
links to the time window of [0:20, 0:25), yielding a travel
time of 9 min from ETC4 to ETC5. Consequently, a traveler
departing at [0:00, 0:05) and traveling from the origin, ETC1,
to the destination, ETC5, requires 33.5 min. The algorithm for
calibrating linked travel time in shown Algorithm 1.

Algorithm 1 ETC Linked Route Travel Time
Parameters and input data:
ETCi : the i th ETC gate from the origin, ETCo, to the
destination, ETCd ;
Li : the i th ETC segment between ETCi and ETC(i+1);
W j : the j th 5-min time interval, where j = 1, . . . , M;
ETT(Li , W j ): the ETC travel time of Li at W j ;
ERT(Ws)

k
�: the estimated route travel time departing at time

Ws and traveling from locations ETC� to ETCk ;
begin

Set the departure time Ws ;
Initialize ERT(Ws)

d
o = 0;

Set j = s;
for i = o to (o + d − 1) do

j = j + �ERT(W( j+1))
i
(i−1)/5�;

ERT(Ws)
d
o = ERT(Ws)

d
o + ETT(Li , W j );

end for
end

Using the TDCS data in 2014, we study two sections in the
Taiwan freeway system. The Taipei-to-Taichung (southbound)
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route on Freeway No. 1. is approximately 151 km, including
33 ETC gates. The Yilan-to-Taipei (northbound) route across
Freeways No. 5 (31 km), 3 (5 km), and 3A (4 km) is about
40 km, passing through seven ETC gates and five tunnels,
including the longest Hsueh-Shan tunnel 12.9 km. Taipei
and Taichung are the major metropolises in northern and
central Taiwan, respectively, whereas Yilan County is located
in northeastern Taiwan, with tourist attractions.

Besides, we also apply the modeling methodology to the
travel time data of Sonoma US-101-N with a path from
Vista Point (Marin County) to Redwood (Sonoma County)
for approximately 130 km. The data are available from the
Caltrans Performance Measurement System (PeMS) [25] that
provides the travel time data calculated based on the speed
measurements collected by vehicle loop detectors. Although
ETC travel time data are our focus, we use this data set to
show the broad applicability of the methodology.

The remainder of this paper is structured as follows.
Section II presents the modeling approach for travel time
variability and reliability using functional principal component
analysis for the conditional density functions. Section III
provides the methods of estimating the components of the
proposed model. Section IV demonstrates the numerical results
of the real data applications. Finally, Section V summarizes
the research with concluding remarks and discussions.

II. PROPOSED METHODS

We model travel time distributions through conditional
probability density functions that form the basis for using
FDA to capture time-varying changes of travel time variability
and reliability. Because a route’s travel time depends on the
time of day, we take it as a function of the departure time.
We consider the conditional travel time density functions at
each time-of-day period to be random functions because travel
times are themselves stochastic. The conditional travel time
density functions in a time-of-day period can be represented
by the Karhunen–Loève representation [17], [26]. We incor-
porate the departure time-of-day influence on these random
density functions through the conditional expectation of the
stochastic representation. The probability density functions of
travel times are estimated using distribution-free kernel density
function estimation [27], and the quantiles of the distributions
are further derived from the probability density functions.

A. Stochastic Representation of a Random Function

Let f (x) be a random function with support on a common
interval X . In this study, f (x) corresponds to a derived
density function of travel time x ; its realization cannot be
observed directly, and thus, it must be estimated. For FDA,
we assume that the random function f (x) is continuous and
square integrable in L2(X ); that is,

∫
X E

{
f 2(x)

}
dx < ∞.

For any functions f and g in L2(X ), define the inner product
〈 f, g〉 = ∫

X f (x)g(x)dx .
The Karhunen–Loève representation decomposes the ran-

dom function into fixed and random parts:

f (x) = μ(x) +
∞∑
j=1

ξ jφ j (x). (1)

The fixed part is the mean function μ(x) = E{ f (x)} that is
smooth (twice continuously differentiable); the random part
comprises the sum of the random components, which is a
linear combination of a set of basis functions coupled with
random coefficients. The basis functions {φ j , j = 1, 2, . . .} in
L2(X ) are orthonormal and smooth, satisfying 〈φ j , φl〉 = δ j l ,
where δ j l is the Kronecker symbol with 1s if j = l and 0s
otherwise. The random coefficients or principal components
ξ j = 〈 f − μ,φ j 〉 are uncorrelated with mean E(ξ j ) = 0
and variance var(ξ j ) = λ j . The first principal component ξ1
represents the length of the projection of ( f −μ) onto φ1, and
ξ1φ1 explains the maximum amount of the process variance in
f among all functions involving a single real-valued random
variable. Analogously, ξ2φ2 explains the additional maximum
amount of variance unexplained by ξ1φ1, and so on.

The basis functions {φ j } are associated with the covariance
operator G(·, ·) of f (·) and satisfy the eigendecomposition
〈G(x, ·), φ j 〉 = λ j φ j (x). Here, for notational convenience,
we do not distinguish the covariance function G(·, ·) from the
covariance operator. The autocovariance function of f at any
two points x and x ′ in X , cov

{
f (x), f (x ′)

}
, has the spectral

decomposition

G(x1, x2) =
∞∑

j=1

λ j φ j (x1)φ j (x2). (2)

The eigenvalues λ j are nonincreasing in j with the property
that

∑∞
j=1 λ j < ∞ for an L2 process. The realizations

of the random coefficients ξ j are the functional principal
component (FPC) scores.

The convergence of the sum in (1) holds uniformly such that
supx∈X E{ f (x) − μ(x) − ∑K

j=1 ξ j φ j (x)}2 converges to zero
as K → ∞. In practice, only a finite number of realizations in
each data object are recorded even though the random function
is infinite dimensional, and the FPCs corresponding to small
values of {λ j } close to zero may not contribute significantly
to the sum of the infinite series. It then leads to a truncated
version of (1),

f K (x) = μ(x) +
K∑

j=1

ξ jφ j (x). (3)

Here, the integer K must be chosen appropriately to ensure
that the first K terms yield an accurate approximation of the
infinite sum. The expansion (1) facilitates dimension reduction
from the infinite sum to the first K terms for a large enough K ;
thus, the information contained in f (·) is essentially composed
of the K -dimensional vector (ξ1, . . . , ξK ) in (3). Therefore,
the vector of the principal components serves as a proxy for
the infinite-dimensional function of f (·) in (1).

B. Functional Travel Time Density Model

The proposed functional travel time density
model (FTTDM) formulates the influence of departure
time of day T through the FPCs, with the conditional
expectation

E{ f (x) | T } = μ(x) +
∞∑
j=1

E(ξ j | T )φ j (x), (4)
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where μ(x) is the overall mean function as in (1), and φ j (x)
is the basis function satisfying the spectral decomposition of
the conditional covariance function,

G(x, x ′ | T = t) = cov
{

ft (x), ft (x ′)
}

=
∞∑

k=1,l=1

E(ξkξl | T = t)φk(x)φl(x ′). (5)

Because the eigenfunctions {φ j } are independent of the covari-
ate T , the conditional covariance (5) implies that the basis
functions {φ j } also satisfy the spectral decomposition of the
marginal autocovariance function in (2).

Let E(ξ j | T = t) = η j (t) be the conditional expectation of
the random coefficient ξ j at T = t and assume that η j (t) is a
smooth function in time-of-day t . The function η j (t) reflects
the time-of-day changes in the travel time density functions.
The FTTDM in (4) is an extension of the classical Karhunen–
Loève expansion in (1). It incorporates the influence of the
time-of-day covariate effect T through the conditional distrib-
ution of the principal components {ξ j }, the random effects in
the model, via the smooth regression relationship between ξ j

and T .

C. Travel Time Reliability and Conditional
Quantile Functions

Let ft (x) = f (x | T = t) denote the probability density
function conditional at the time-of-day period T = t , satisfy-
ing

∫ ∞
−∞ ft (x)dx = 1. The conditional travel time distribution

function Ft (·) at the covariate T = t is obtained using ft (·)
as follows:

Ft (x) = F(x | T = t) =
∫ x

−∞
ft (z) dz. (6)

The 100u% quantile of the conditional travel time distribution
is given by

Qt (u) = Q(u | T = t) = F−1
t (u) = inf{x : Ft (x) ≥ u}, (7)

where 0 ≤ u ≤ 1.
Whereas the conditional travel time distribution functions

in (6) are useful for quantifying travel time variability, the con-
ditional quantile functions in (7) also serve as a useful measure
for reflecting travel time variability; furthermore, they can be
used to quantify travel time reliability. Among various indices
defined for travel time reliability, the notion of buffer time
is commonly incorporated by road users when planning trips
in consideration of travel time variability. The buffer time
measures the deviation in travel time from the average value
[6], [28]. However, when the travel time distribution is skewed,
it is appropriate to replace the referenced average value with its
median. We extend the conventional buffer time index (BTI)
to a robust time-varying travel time reliability function using
the FTTDM and the quantiles.

The BTI indicates the extra percentage of time required
compared with the average or median travel time, which is
straightforward and easy to understand. The BTI, conditional
on the departure time-of-day T = t , is defined as

BTIt (u; Mt ) = Qt (u) − Mt

Mt
, (8)

where Qt (u) is the 100u% conditional quantile of travel time
at T = t , with u restricted to u > 0.5. The reference
quantity Mt can be the mean Mt = ∫ ∞

−∞ z ft (z)dz or the
median Mt = Qt (0.5). The buffer time uses the average or
median travel time as a reference for calculating the percentage
difference between the 100u percentile of the travel time and
the reference travel time. It represents the extra time that
most travelers should add on (100u percent) to the reference
travel time to arrive on time. When the conditional travel time
distribution is skewed or the realizations of travel time contain
many outliers, as is often the case, BTI relative to the median
travel time is recommended. The BTI value increases as the
reliability decreases; specifically, a low BTI value indicates a
highly reliable travel time.

Besides, we also consider the two robust measures of travel
time reliability, the width and the skewness [6], which are
based he quantiles of the distributions as well,

λvar
t = Qt (0.9)−Qt(0.1)

Qt (0.5)
, λskew

t = Qt (0.9)−Qt(0.5)

Qt (0.5) − Qt (0.1)
.

(9)

The width index λvar
t depicts the ratio of the range of the

central 80% observations to the median travel time, which is
similar to the robust BTIt (0.9; Mt ) yet concerning the higher
quantile range above the median instead. The skewness index
λskew

t presents the relative chance of extreme travel times
between the 90th and the 10th percentiles relative to the
median of the distribution.

III. ESTIMATION OF MODEL COMPONENTS

The conditional density function of travel time ft (x) is
unknown and must be estimated. We use the observations of
travel time to estimate the conditional densities and quantiles
of travel time for each time-of-day period. Let T = t1, . . . , tM

be the observed time points and {Xtk ,i ; i = 1, . . . , n} denote
the observations of travel time at the time-of-day period tk ,
k = 1, . . . , M , for day i . Our application features M = 216
time points with 5-min intervals from 06:00 to 23:59.

A. Nonparametric Kernel Density Estimation

In the literature, typical parametric forms of probability
distribution functions used to fit travel time data include
normal, lognormal, gamma, Weibull, and Gaussian mix-
ture (GMM) models [2], [5], [10], [29]–[31].Nevertheless,
assuming a particular parametric travel time distribution model
may be inadequate because a single model cannot satisfactorily
accommodate various traffic conditions for different road
segments and periods, and inaccurate probability distribution
models may limit applications to travel time analyses [6], [29].
The nonparametric kernel density estimation for travel time
distributions, which is data adaptive, can relax this constraint
[32]–[34]. In our numerical results to be shown later, these
parametric models indicate a significant lack of model fit,
whereas the kernel density estimates pass goodness-of-fit tests.

Using kernel density estimators, we obtain a smooth density
function estimate of fT (x) at each T = t1, . . . , tM , evaluated
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at the range of travel times x by

f̃tk (x) = 1

nh

n∑
i=1

K

(
x − Xtk,i

h

)
, (10)

where K (·) is the kernel function and h is the bandwidth
(h → 0 as n → ∞), which can be selected using a leave-
one-point-out cross-validation method. The real-valued kernel
function K (·) is nonnegative definite and symmetric around
zero; has finite support such that K (x) = 0 for |x | > c, where
c > 0 is a constant; and satisfies

∫ ∞
−∞ K (x)dx = 1 and the

Lipschitz condition. Commonly used kernel functions include
Epanechnikov, triangular, biweight, and uniform kernels [27].

Because the support of fT (x) at each T = tk can differ,
we determine the range of support by taking the minimum
x1 and maximum xL across all supports of the conditional
density estimates f̃tk (x), for k = 1, . . . , M . Let the common
support be the closed interval X = [x1, xL ]. We evaluate
the conditional densities at 100 equally spaced points {xi}
in X with L = 100. Thus, the kernel density estimates
{ f̃t1(x), . . . , f̃tM (x)} in (10), evaluated at x ∈ X and con-
ditional on each time-of-day period T = t1, . . . , tM , are used
as realizations of the random functions fT (x) conditional on
T = tk for further modeling and analysis.

B. Estimation of Model Components

We perform FPC analysis on the set of estimated density
functions. We obtain the estimates of the mean function
μ̂(x) and covariance function Ĝ(x, x ′) through one- and
two-dimensional local polynomial regression [35]. For the
mean function, we use local linear smoothing by minimizing

M∑
k=1

L∑
l=1

Kμ

(
x − xl

hμ

) {
f̃tk (xl) − α0 − α1(x − xl)

}2
, (11)

for all x , with respect to (α0, α1), where Kμ is the kernel
function and hμ is the bandwidth. The resulting mean function
estimate μ̂(x) = α̂0(x) is the minimizer of (11). Let
Gk(xl, xl′) = { f̃tk (xl)− μ̂(xl)}{ f̃tk (x ′

l)− μ̂(x ′
l )} for 1 ≤ l, l ′ ≤

L. For the covariance function, we minimize

M∑
k=1

∑
1≤l �=l′≤L

Kc

(
x − xl

hc
,

x ′ − xl′

hc

)
{Gk(xl, xl′ ) − β0

−β11(x − xl) − β12(x ′ − xl′)}2, (12)

for all (x, x ′), with respect to (β0, β11, β12), where Kc is
the bivariate kernel function and hc is the bandwidth. The
resulting covariance function estimate Ĝ(x, x ′) = β̂0(x, x ′) is
the minimizer of (12). Here, we use the leave-one-curve-out
cross-validation method to obtain the bandwidths hμ and hc.

The estimated eigenvalues λ̂ j and the orthonormal eigen-
functions {φ̂ j (x)} are obtained through discrete approxima-
tions to the solutions of the eigen-equations 〈Ĝ(·, x), φ̂ j 〉 =
λ̂ j φ̂ j (x). The FPC scores {ξ̂tk , j ; k = 1, . . . , M} can be
obtained using numerical approximations to the inner product
〈 f̃tk − μ̂, φ̂ j 〉. The estimated conditional mean function η̂ j (t)

of E{ξ j | T = t} is obtained using a local linear smoother
that minimizes

M∑
k=1

Kξ

(
tk − t

hξ

)
[ξ̂tk , j − {γ0 + γ1(tk − t)}]2 (13)

for all t , with respect to (γ0, γ1). This yields η̂ j (t) = γ̂0(t),
the minimizer of (13) at t . Here, Kξ is the kernel function,
and hξ is the bandwidth used for the local linear smoother.
FPC analysis techniques have been widely used in FDA. See
[17], [18] for examples of more detailed descriptions of
estimation and related applications.

Subsequently, the fitted conditional travel time density esti-
mates of FTTDM (4) are obtained using

f̂t (x) = μ̂(x) +
L∑

j=1

η̂ j (t)φ̂ j (x), (14)

where L is chosen according to a selection criterion. L is
commonly chosen on the basis of the proportion of variance
explained by the FPCs;

L = arg min

⎧⎨
⎩K :

K∑
j=1

λ̂ j

/ ∞∑
j=1

λ̂ j ≥ δ

⎫⎬
⎭ , (15)

where δ is chosen as 0.95 in this study, indicating that the
first L components explain 100δ% of the total variance.

The conditional distribution function is estimated using
discrete approximations to

F̂t (x) =
∫ x

−∞
f̂t (u) du,

and the conditional quantile estimator of travel time is obtained
by

Q̂t (u) = F̂−1
t (u) = inf{x : F̂t (x) ≥ u}, 0 ≤ u ≤ 1. (16)

The estimator of the time-varying BTI, conditional on time
T = t , is obtained by

̂BTIt (u; Mt ) = Q̂t (u) − M̂t

M̂t
, (17)

where Q̂t (u) is the estimated 100u% quantile, and M̂t =∫
X x f̂t (x)dx is the estimated mean or M̂t = Q̂t (0.5) the

estimated median.

IV. REAL DATA APPLICATION TO ESTIMATING TRAVEL

TIME VARIABILITY AND RELIABILITY FOR A FREEWAY

We illustrate the results for the Taipei-to-Taichung route
in more detail, whereas showing only the selected quantiles
and the reliability indicators for the Yilan-to-Taipei and the
Sonoma-US-101 routes due to limited space. Because traffic
characteristics on Saturdays and Sundays differ from those on
work days, we divide the daily travel time records into four
exclusive groups: regular weekdays (Mondays–Thursdays),
Fridays, Saturdays, and Sundays. We exclude weekdays that
are public holidays because their traffic patterns generally
differ from those of the four types of day.
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Fig. 2. Kernel density function estimates using (10) of the travel times
departed at 08:00, 12:00 and 18:00 (row-wise; top to bottom) for regular
weekdays, Fridays, Saturdays, and Sundays (column-wise; left to right) of
the Taipei-to-Taichung route.

A. Kernel Density Function Estimates of Travel Time

Fig. 2 illustrates the estimated kernel density functions,
using (10), for travel times of the Taipei-to-Taichung route
at 08:00, 12:00, and 18:00 for the four types of day. The peak
of a density curve corresponds to the mode of travel time,
and a density curve with a wide spread indicates considerable
variability.

Fig. 2 shows evident differences in shape not only among
the types of day but also among departure times. For each
of the four types of day, the modes and shapes of the
conditional density functions vary significantly with time-of-
day periods. The density functions at 08:00 reveal slightly
smaller modes of travel time with shorter spreads on weekends
than on weekdays. The density functions at 12:00 on week-
ends indicate unstable travel times compared with those on
weekdays. The evening traffic (18:00) exhibits distinct density
function shapes, indicating different extents of traffic jams,
particularly on weekends and Fridays. Therefore, it is plausible
to model travel times through kernel density functions with
flexible shapes depending on the departure time to reflect the
time-varying feature of travel time.

B. Comparisons With Parametric Models of Travel Time

We compare the kernel density estimates of travel time
with the parametric density models, including normal, lognor-
mal, Weibull, gamma densities and Gaussian mixture model
(GMM). Fig. 3 demonstrates discrepancy between each fitted
parametric model and the kernel density estimates. Table I
presents the Kolmogorov-Smirnov tests [36] for the goodness
of fit (GOF) of each model based on the 216 probability
density functions conditional on the departure time of day. The
outcome indicates a severe lack of fit for the parametric density
models, whereas almost all the kernel density estimates pass
the GOF tests. Although the GMM generally fits better than

Fig. 3. Comparisons between the fitted parametric density functions
(lognormal, Weibull, gamma, and GMM) and the kernel density estimates
superimposed on the histograms of the travel times on weekdays departed at
09:00 for the Taipei-to-Taichung route.

TABLE I

NUMBERS OF PASSING THE KOLMOGOROV-SMIRNOV TESTS (OUT OF 216)
ON THE PROBABILITY MODELS (LN: LOGNORMAL; WB: WEIBULL;

GA: GAMMA; NO: NORMAL; GMM: GAUSSIAN MIXTURE MODEL)
FOR THE TRAVEL TIME DATA FOR (A) TAIPEI-TO-TAICHING

AND (B) YILAN-TO-TAIPEI ROUTES

Fig. 4. Estimated mean functions of travel time densities for the Taipei-to-
Taichung route.

other parametric models, it is still not comparable to the kernel
density estimates. The comparison justifies the kernel density
estimates are adequate for modeling travel time distributions.

C. Functional Principal Component Analysis for Probability
Density Functions of Travel Times

This section illustrates the estimated components of the
FTTDM (4) for the Taipei-to-Taichung route. Fig. 4 displays
the estimated mean functions using the one-dimensional local
polynomial smoothing method in (11). These are the marginal
mean functions without considering the time-of-day effect
on travel time. The spreads shown in the density functions
indicate that travel times on Fridays and Saturdays are more
variable than those on weekdays and Fridays, and the modes
of the density functions center around 95 min.

Fig. 5 displays the estimated covariance functions.
These covariance functions reflect the fluctuation and
auto-correlation of the density functions. They are used
to obtain the eigenfunctions {φ̂ j (t); j = 1, . . . , L} via
spectral decompositions and the associated FPC scores
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Fig. 5. Estimated covariance functions of travel time densities for the Taipei-
to-Taichung route.

Fig. 6. Estimated eigenfunctions φ̂ j (t) for travel times of the Taipei-to-
Taichung route, with the total number of components selected by the 95%
proportion-of-variance-explained criterion using (15).

{ξ̂tk , j ; k = 1, . . . , M, j = 1, . . . , L}, as illustrated
in Figs. 6 and 7. Using the proportion-of-variance-explained
criterion in (15) with a threshold value of 95%, three FPCs are
selected for Fridays and Saturdays and two for weekdays and
Sundays. The peaks and troughs of the eigenfunctions reflect
the directions of variation for each FPC component at various
values of travel time, and the corresponding FPC scores reflect
the sizes of each individual variation in the density functions.

Most importantly, the FPC scores displayed as a function
of departure times, along with the conditional expectations
of the random coefficients {η̂ j (t); j = 1, . . . , L} obtained
using (13), clearly demonstrate the time-varying feature of
the FPCs, as shown in Fig. 7. The FPCs vary with departure
time of day, which reflects the time-dependent characteristic
of travel time variability. In Fig. 7(a), for example, the first
component of the conditional FPC scores shows the main
peak hours at approximately 8:30 and 18:30, and the second
component reveals the secondary peaks in the afternoon at
approximately 15:00. The differences in travel time patterns
among the four types of day support the strategy of subgroup
analysis.

Fig. 7. Estimated conditional expectation η̂ j (t) using (13) superimposed on
the FPC scores, associated with the eigenfunctions in Fig. 6.

Fig. 8. Fitted travel time density surfaces of the Taipei-to-Taichung route.

D. Fitted Functional Travel Time Density Models

Figs. 8 displays the 3-dimensional surfaces of the fitted
FTTDM, using (14), for the Taipei-to-Taichung route as a
function of departure time of day. These surfaces characterize
the temporal dynamics of travel time density functions with
the time-varying feature on departure time. The cross-sectional
curve at a specific time-of-day period corresponds to the con-
ditional density function. Density functions with wider spreads
indicate larger travel time variations; those with right-shifted
modes show longer travel times, and vice versa.

The travel time density surfaces demonstrate dynamic
changes in travel time distributions with departure time of
day. The density curves exhibit two heavy tails on weekdays,
indicating traffic congestion during peak hours (at approxi-
mately 09:00 and 18:00). On Fridays, the evening peak-hour
traffic at approximately 18:00 is more severe than the morning
peak-hour traffic. On Saturdays, the spread of the density
function increases considerably with the period in the morning,
indicating significant variations and longer travel times for
departures at later morning hours; this is not observed on
Sundays. The dynamic changes in the travel time density
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Fig. 9. (a) The estimated 85% quantile (dashed black) and the median
function (solid red), superimposed on the sample medians (dotted curves)
and enveloped by the 25th and the 75th percentile functions (shaded areas);
(b) the reliability indicators BTIt (0.9; Mt ) with Mt as mean (dotted red) and
median (solid) (row 2), the width λvar

t (row 3), and the skewness λskew
t

(bottom row) for the Taipei-to-Taichung route.

functions with time of day reveal the time-varying feature
of travel time variability, which also suggests that travel
time reliability has time-varying characteristics. On Sundays,
considerable variations occur from 17:00 to 18:00.

E. Quantile Functions and Travel Time Reliability

The quantile functions of travel time distributions obtained
using (16) as a function of departure time of day are useful for
depicting the dynamics of travel time variability. The estimated
median (50% quantile) functions for travel times are shown
in Fig. 9(a). The median curves of travel time indicate different
peak hours among the four types of day, covered by the shaded
bands of the 25th and 75th percentiles: the widths of the bands
suggest their variability. The sample median curves (dashed)
are superimposed on the fitted median functions, indicating
that they are close to each other with slightly more significant
discrepancies during peak hours. These figures clearly indicate
that the route is frequently used during weekday mornings and
Friday evenings, thereby causing longer travel times than other
time periods. The traffic patterns generally show morning and

Fig. 10. The estimated quantile functions and the reliability indicators for
(a) the Yilan-to-Taipei route and (b) the Sonoma-US-101 route, with a similar
layout to Fig. 9.

evening peak-hours. In particular, during the peak periods with
large variations (e.g., 15:00 to 21:59 on Sundays northbound),
the 75% and 85% quantile travel times are much higher than
the median travel times. Unreliable travel times generate costs
for road users; therefore, we suggest providing travel time
information with the median travel times along with higher
quantiles (e.g., the 85% quantile or higher) of travel time. The
time-varying quantile functions facilitate the use of travel time
reliability indices to identify traffic congestion periods.

Fig. 9(b) demonstrates the 0.90 quantile time-varying BTI as
well as the width and the skewness indicators for travel time
reliability. The BTI values with reference to the mean and
median functions suggest parallel patterns with considerable
discrepancy at periods with longer travel times. We suggest
the robust BTI using the median as the reference function
because travel time distributions are skewed to the right, which
is caused by the occurrence of severe traffic congestion.

The BTI values for most off-peak periods (morning and
evening) are less than 5% and occur in stable traffic conditions,
whereas the BTI values increase sharply during peak-hour
periods. In general, travelers require an additional 8–12% of
the median travel time to travel on the route during peak
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hours on weekdays, an additional 13–18% on Fridays, and
an additional 10–25% on Saturdays and Sundays. Compared
with weekdays and Fridays, weekends have significantly more
extreme traffic conditions, with longer lengths and higher BTI
values for travel time reliability. Compared with the average or
median travel time, travel time variability is often low during
off-peak hours and high during traffic congestion periods.
Moreover, low travel time variability implies high travel time
reliability and vice versa. Therefore, the findings for travel
time variability and reliability coincide.

For the other two reliability indicators, the width indica-
tor signifies similar patterns of the unreliability periods as
BTI, whereas the skewness indicator shows more fluctuations
because it measures the relative probability of extreme travel
times, which is different from BTI.

We also show the estimated quantile functions of travel
time and the reliability indicators BTI as departure time-
of-day functions in Fig. 10(a) for the Yilan-to-Taipei route.
The results for the Sonoma-US-101 route are illustrated
in Fig. 10(b). The proposed methods provide analytical tools
to obtain useful travel time information from historical data.

V. DISCUSSION AND CONCLUDING REMARKS

Assessing travel time variability and reliability is a
long-standing topic in transportation research. The paper pro-
poses a new methodology for quantifying travel time variabil-
ity and reliability for a freeway using the aggregated travel
time information in TDCS by linking fragmented travel time
records of consecutive ETC gates. The major contributions of
the proposed method for studying travel time variability and
reliability are summarized as follows.

• The data-adaptive kernel density estimates at each time-
of-day period efficiently summarize the travel time data
with flexible shapes that are not restricted to a particu-
lar parametric density family and accurately reflect the
spread and variability of travel time.

• The proposed FDA approach uses FPC analysis to sum-
marize information of the conditional density functions
at each time-of-day period using a few vectors of FPC
scores. It effectively serves as a dimension reduction
method from infinite-dimensional random functions to
finite-dimensional vectors.

• The novel functional travel time density model (FTTDM),
incorporating time-of-day effects as a covariate into
the FPC analysis on the conditional density functions,
successfully formulates the time-varying feature of the
dynamic travel time variability and reliability.

• The quantile functions derived from FTTDM and the
BTI functions of departure time are useful for depicting
the time-varying variability and reliability of travel time,
which are helpful for road users to identify peak traveling
hours and to plan their trips.

• The conditional travel time density functions derived from
FTTDM serve as a basis for performance evaluation that
accounts for not only the length of travel time but also its
variability and reliability, such as by defining the levels

of service and evaluating the dynamic conditions of a
transportation system.

In this study, BTI was used as the performance measure for
travel time reliability, which is associated with the variability
and quantiles of travel time. As the basis for deriving travel
time distributions, the proposed FTTDM can also be applied
to other reliability measures of travel time, such as statistical
range methods, tardy-trip measures, and other probability
measures [6].

In the case study, the route travel times vary with the
departure time of day, and the peak hours of departure time
differ across the four types of day. The spreads of travel time,
as indicated in the estimated conditional probability density
functions, increase significantly with travel time.

Numerous long travel times of the routes appear in the
datasets. It may be of interest to investigate the causes of such
outliers in travel times by linking the official records of traffic
accidents to incidents on the freeways in future studies.

Finally, path travel time can be estimated in a path-tracking
or a link-based manner. In this study, we obtain travel times
by the weighted sum of link travel times and focus on the
methodology of modeling variability and reliability of travel
times. Comparisons with the path-tracking travel times could
be of interest in future research.
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